

 Frank McCown at Harding University 1

Android Application Programming

Tutorial 6: App Settings

Introduction

Most Android applications have a Settings menu option which allows

users to set the application’s settings/preferences. This is so common

that a specialized Activity class was developed just for changing

application settings (android.preference.PreferenceActivity). In

this tutorial you will learn how to create applications settings using the

PreferenceActivity, and you will learn how to start another activity

using an Intent.

Setup Your Project

Download and import the Andriod project into Eclipse which implements the extra challenge from the previous

tutorial:

1. Obtain the file AndroidTicTacToe-Tutorial5.zip from your instructor.

2. Unzip AndroidTicTacToe-Tutorial5.zip in a directory of your choosing.

3. In Eclipse, choose File � Import… � Existing Projects into Workspace…

4. Select “Select root directory:” and click Browse.

5. Navigate to the AndroidTicTacToe-Tutorial5 directory that was created in step 2 and click OK.

6. Make sure “Copy projects into workspace” is checked, then click Finish.

Create the Preference XML and PreferenceActivity

The PreferenceActivity simplifies the creation of a settings screen for your application. It uses an XML file

(preferences.xml) to list the various application settings. The preferences are saved using the

SharedPreferences class, just as they were in the previous tutorial. In some cases, very little to no code needs

to be written to change application settings.

The first thing you need to do is create an XML file that lists the three application settings for our tic-tac-toe

game:

1. Create a res/xml directory.

2. Create a res/xml/preferences.xml file. We’ll be creating three preferences:

1) a CheckBoxPreference for turning the sound on and off,

 Frank McCown at Harding University 2

2) an EditTextPreference for setting the text that is displayed when the

user wins, and

3) a ListPreference for setting the AI’s difficulty level.

These three are not the only types of preferences, but they are probably

the most popular types of preferences.

3. Type the XML below into preferences.xml:

The PreferenceScreen can have any number of preferences inside it. If there are a large number of

preferences which can be organized by type, it’s a good idea to organize these into PreferenceCategory’s.

Since we only have three preferences, a PreferenceCategory is not necessary.

Note that some of the default values for the preferences are coming strings that we defined earlier in the

strings.xml file (result_human_wins and difficulty_expert). The ListPreference will get its values

from an arrays.xml file we’ll create in the next step.

4. Create a res/values/arrays.xml file with the following XML:

<?xml version="1.0" encoding="utf-8"?>
<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android">

 <CheckBoxPreference
 android:key="sound"

android:title="Sound"
 android:defaultValue="true"
 android:summary="Turn the sound on or off" />

 <EditTextPreference
 android:key="victory_message"
 android:summary=""
 android:defaultValue="@string/result_human_wins"
 android:title="Victory message" />

 <ListPreference
 android:key="difficulty_level"
 android:title="Difficulty level"
 android:summary=""

 android:defaultValue="@string/difficulty_expert"
 android:entries="@array/list_difficulty_level"
 android:entryValues="@array/list_difficulty_level" />

</PreferenceScreen>

 Frank McCown at Harding University 3

This file is creating a list that will be displayed when selecting the difficulty level, and it uses strings from the

strings.xml file rather than hard-coding text that may need to be changed sometime in the future.

5. Now add a Java class to your project called Settings which extends the PreferenceActivity class. This

class should specify in the onCreate() method that the preferences.xml file will be used to display the list

of preferences:

Now we need to display the settings which we’ll do in the next step.

Display the Settings

Since we are using the Preferences to set the difficulty level, we don’t need to do this using the application

menu anymore. We’ll replace the Difficulty menu button with one that displays the settings.

1. In res/menu/options_menu.xml, replace the Difficulty menu with a Settings menu option. You will also

need to add an image to res/drawable for representing the settings option.

2. In AndroidTicTacToe.java, remove the final int DIALOG_DIFFICULTY_ID and the code for creating the

difficulty level dialog box in onCreateDialog().

3. Replace the code for handing the Difficulty menu option in onOptionsItemSelected() with code that will

launch the Settings activity. It will use an Intent to start the activity:

The startActivityForResult() function indicates that we would like to be notified when the Settings

activity is exited (when the user presses the Android device’s Back button). This is important since we’ll

need to change some class-level variables if the sound is turned on or off or if the difficulty level is changed.

<?xml version="1.0" encoding="utf-8"?>
<resources>

 <string-array name="list_difficulty_level">
 <item>@string/difficulty_easy</item>

 <item>@string/difficulty_harder</item>
 <item>@string/difficulty_expert</item>
 </string-array>

</resources>

public class Settings extends PreferenceActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 addPreferencesFromResource(R.xml.preferences);
 }
}

case R.id.settings:

 startActivityForResult(new Intent(this, Settings.class), 0);

 return true;

 Frank McCown at Harding University 4

There’s also a startActivity() function which could be used if we don’t need to be notified when the

activity is closed.

4. Now create the onActivityResult() method which will be called when the Settings activity is exited. The

resultCode will be set to RESULT_CANCELED if the user clicks the Back button on their device.

The mSoundOn variable from above is not yet defined. It is left to you to declare this class-level boolean

variable and use it to determine if the mHumanMediaPlayer or mComputerMediaPlayer should be played.

5. In order for the Intent to work, you must also modify the app’s AndroidManifest.xml file, adding the

following inside the <application> tags which indicate the Settings activity should be included as part of

this app:

6. The sound settings and the difficulty level need to be set in AndroidTicTacToe’s onCreate() method like

so:

Note that the code segment above initializes the mPrefs variable differently than was done in the previous

tutorial. This is so the PreferenceActivity and the AndroidTicTacToe activity can both be using the

same settings.

@Override
protected void onActivityResult(int requestCode, int resultCode, Intent data) {

 if (requestCode == RESULT_CANCELED) {
 // Apply potentially new settings

 mSoundOn = mPrefs.getBoolean("sound", true);

 String difficultyLevel = mPrefs.getString("difficulty_level",
 getResources().getString(R.string.difficulty_harder));

 if (difficultyLevel.equals(getResources().getString(R.string.difficulty_easy)))

 mGame.setDifficultyLevel(TicTacToeGame.DifficultyLevel.Easy);
 else if (difficultyLevel.equals(getResources().getString(R.string.difficulty_harder)))

 mGame.setDifficultyLevel(TicTacToeGame.DifficultyLevel.Harder);
 else
 mGame.setDifficultyLevel(TicTacToeGame.DifficultyLevel.Expert);
 }
 }

}

<!-- Allow the Settings activity to be launched -->

<activity android:name=".Settings" android:label="Settings"></activity>

// Restore the scores from the persistent preference data source
mPrefs = PreferenceManager.getDefaultSharedPreferences(this);
mSoundOn = mPrefs.getBoolean("sound", true);

String difficultyLevel = mPrefs.getString("difficulty_level",
 getResources().getString(R.string.difficulty_harder));
if (difficultyLevel.equals(getResources().getString(R.string.difficulty_easy)))
 mGame.setDifficultyLevel(TicTacToeGame.DifficultyLevel.Easy);
else if (difficultyLevel.equals(getResources().getString(R.string.difficulty_harder)))
 mGame.setDifficultyLevel(TicTacToeGame.DifficultyLevel.Harder);
else

 mGame.setDifficultyLevel(TicTacToeGame.DifficultyLevel.Expert);

 Frank McCown at Harding University 5

7. Finally, change the code in the endGame() function to display the victory message preference:

Run your app and launch the Settings screen by selecting the Menu and pressing Settings. Verify that you can

now turn the sound on and off, set the victory message, and set the difficulty level. We’ve gained a lot of

functionality with little code.

You can view the settings using the File Explorer in the DDMS perspective in Eclipse. Look under the

data/data/edu.harding.tictactoe/shared_prefs directory, and you will see a file called

edu.harding.tictactoe_preferences.xml.

Displaying Setting Information

There is one thing that would make the settings a little more user friendly… displaying the actual victory

message and difficulty level inside the settings menu. That way the user doesn’t have to actually select the

setting just to see what it is set to. In other words, we want to change the settings on the left to look like the

settings on the right:

1. In the Settings.java file, add the following code to the onCreate() method:

else if (winner == 2) {
 mHumanWins++;
 mHumanScoreTextView.setText(Integer.toString(mHumanWins));
 String defaultMessage = getResources().getString(R.string.result_human_wins);
 mInfoTextView.setText(mPrefs.getString("victory_message", defaultMessage));

}

 Frank McCown at Harding University 6

The code above first sets the difficulty level’s setting’s summary to the currently selected difficulty level.

Then it creates an OnPreferenceChangeListener which will execute when the difficulty level is changed.

This is necessary so we can change the summary when a different level is selected, but it also makes us

manually have to save the preference.

2. You will need to write similar code to retrieve the victory message, display it as the summary text, and add

an OnPreferenceChangeListener to save the message. The code below will get you started:

Run the app again and verify that the settings now display the current victory message and difficulty level.

Extra Challenge

Create a Board color preference that will allow the user to change the board color. An ideal method is to display

the ColorPickerDialog that is provided in the Android API demos:

http://developer.android.com/resources/samples/ApiDemos/src/com/example/android/apis/graphics/ColorPic

kerDialog.html

As shown in the figure below, the user clicks an area around the circle to pick a color and then must click the

circle in the middle to dismiss the dialog. When they return to the game, the board color should match the

selected color.

final SharedPreferences prefs =
PreferenceManager.getDefaultSharedPreferences(getBaseContext());

final ListPreference difficultyLevelPref = (ListPreference) findPreference("difficulty_level");
String difficulty = prefs.getString("difficulty_level",
 getResources().getString(R.string.difficulty_expert));

difficultyLevelPref.setSummary((CharSequence) difficulty);

difficultyLevelPref.setOnPreferenceChangeListener(new OnPreferenceChangeListener() {
 @Override
 public boolean onPreferenceChange(Preference preference, Object newValue) {
 difficultyLevelPref.setSummary((CharSequence) newValue);

 // Since we are handling the pref, we must save it
 SharedPreferences.Editor ed = prefs.edit();
 ed.putString("difficulty_level", newValue.toString());
 ed.commit();
 return true;
 }
});

final EditTextPreference victoryMessagePref = (EditTextPreference)
 findPreference("victory_message");
String victoryMessage = prefs.getString("victory_message",

getResources().getString(R.string.result_human_wins));

 Frank McCown at Harding University 7

The Settings class will need to instantiate the ColorPickerDialog using the current color setting. The

constructor takes a OnColorChangedListener which is used to notify the caller when the color is selected. You

will need to save the selected color in the same manner in which you saved other preferences. The color should

be applied to the BoardView’s board color. You will need to create getters and setters for the board color in

the BoardView to accomplish this task.

Except as otherwise noted, the content of this document is licensed under the Creative Commons Attribution 3.0 License

http://creativecommons.org/licenses/by/3.0

