
 Frank McCown at Harding University 1

Android Application Programming

Tutorial 1: Introduction to Android and Eclipse

Introduction

In this tutorial, you will setup your Android development environment and go through the Hello World tutorial

on the Android Developer website at http://developer.android.com/resources/tutorials/hello-world.html. You

will finally learn about using the Eclipse debugger and logging errors.

Setup Your Environment

The best way to develop applications for Android is using the Eclipse IDE and the Android plug-in for Eclipse

called Android Development Tools (ADT). You can test your applications by running them on an Android Virtual

Device (AVD), aka Android emulator.

To setup your environment, follow each of the steps below in order. Detailed installation instructions are

available here: http://developer.android.com/sdk/installing.html

1. Download and install JDK 7

http://www.oracle.com/technetwork/java/javase/downloads/index.html

2. Download and install Eclipse IDE for Java EE Developers (version 3.7 - Indigo)

http://www.eclipse.org/downloads/

3. Download the Android SDK and unzip it onto your hard drive in a location of your choosing.

http://developer.android.com/sdk/index.html

4. Download and install the Android Development Tools (ADT) for Eclipse

http://developer.android.com/sdk/eclipse-adt.html

Now your environment is ready for development.

Hello World Tutorial

Run through the “Hello World” tutorial at http://developer.android.com/resources/tutorials/hello-world.html

which takes you through creating an Android Virtual Device (AVD), creating an Android project, writing some

code to display “Hello, Android”, and running the application in the emulator.

When you run an Android application, Eclipse will first start an emulator if one isn’t already running. If you have

multiple AVD configurations, it’s usually a good idea to first start your emulator of choice so you can control

which emulator you want to use.

It may take a few minutes for your emulator to appear because of a lengthy initialization period… you’ll have to

be patient. You can watch the status of the emulator from Eclipse’s Console window. It will look something like

the lines displayed below which show how the .apk file is first installed and then launched:

[2011-10-22 14:22:34 - HelloAndroid] ------------------------------

 Frank McCown at Harding University 2

[2011-10-22 14:22:34 - HelloAndroid] Android Launch!

[2011-10-22 14:22:34 - HelloAndroid] adb is running normally.

[2011-10-22 14:22:34 - HelloAndroid] Performing com.example.HelloAndroidActivity activity launch
[2011-10-22 14:22:34 - HelloAndroid] Automatic Target Mode: using existing emulator 'emulator-5554'

running compatible AVD 'MyDevice'

[2011-10-22 14:22:34 - HelloAndroid] Uploading HelloAndroid.apk onto device 'emulator-5554'

[2011-10-22 14:22:34 - HelloAndroid] Installing HelloAndroid.apk...

[2011-10-22 14:22:38 - HelloAndroid] Success!

[2011-10-22 14:22:38 - HelloAndroid] Starting activity com.example.HelloAndroidActivity on device
emulator-5554

[2011-10-22 14:22:40 - HelloAndroid] ActivityManager: Starting: Intent {

act=android.intent.action.MAIN cat=[android.intent.category.LAUNCHER]

cmp=com.example/.HelloAndroidActivity }

Once the application is started, you will see it

running like the figure on the right. Note that this

is the default Android 2.2 AVD skin. If you use a

different version of Android, your emulator will

look somewhat different.

You can use the emulator as you would a real

Android device by using your mouse to click on the

screen and using your keyboard to type.

When you make changes to your program, do not

close the emulator. Just edit your program, save

it (which makes Eclipse re-build it), and re-run

your new program (Ctrl-F11); the emulator will

replace the previous program with the new one

and execute it (you’ll have to be patient… it can

take up to a minute to reload).

The Android Package

The .apk file, the Android Package, is the application file that was installed and executed on the emulator. The

.apk file is produced by Eclipse in a number of steps as illustrated in the figure below.

 Frank McCown at Harding University 3

1. The Java source code is compiled into Java bytecode (.class files) as is traditionally done in Java

programming.

2. The dx tool converts the Java bytecode into Android bytecode (.dex files), a compact format that can be

executed by a Dalvik virtual machine.

3. Finally, the Android Asset Packaging Tool (aapt) is used to combine .dex files with the AndroidManifest.xml

and other resources making up your application. It produces the .apk which is really just a zip file.

You can find .apk files on the Web and install them directly to your emulator or Android device although you

must be careful about installing un-trusted .apk files that could contain malicious code.

XML Layout

Continue following the tutorial where it describes how to change from a “programmatic” layout to an XML-

based layout. In this section, you’ll learn about main.xml, strings.xml, and the auto-generated R class.

Specifying the layout of your Android apps with XML is considered a “best practice” and is ideally how you will

design all your applications in the future.

Using the Debugger

Continue following the tutorial where it describes how to debug your project in Eclipse. In this part of the

tutorial, you’ll introduce a NullPointerException that will cause your program to terminate abruptly.

You’ll also add a breakpoint so that you can step through your code.

When Eclipse pauses at a break point, you’ll notice that Eclipse has shifted around some sub-windows and

introduced new ones. This orientation is called the “Debug” perspective, and this is the ideal perspective to use

when debugging. The perspective you were seeing before debugging is the “Java” perspective.

When stepping through your code, use F6 to step to the next line, F5 to step into a function call, and F8 to

resume execution. This might take some getting used to if you are transitioning from Visual Studio.

When debugging, sometimes you’ll notice that Eclipse tries to display source code that it cannot find and will

display a “Source not found” message. Press F8 to continue when this happens. Sometimes you’ll need to press

F8 several times because Eclipse will break at several locations. In this example, eventually you’ll notice that

Eclipse will not continue running your app when pressing F8, and that’s because the modal dialog box

complaining about the error in the emulator must be dismissed before Eclipse can continue to execute any code.

Logging Messages

Rather than using the debugger to debug your code, you may find it more helpful to use the Android logging

class (android.util.Log) to send messages to the LogCat. The LogCat should be visible in one of the tabs

near the bottom of the Eclipse window. If you don’t see the LogCat, select Window > Show View > Other…,

Android > LogCat to make it visible.

To log messages, first import android.util.Log and declare a log tag (a unique identifier for your log

messages). Add a call to Log.v() in your program like so:

 Frank McCown at Harding University 4

Now run your program. When the onCreate() method runs, the Log.v() call will output “x is 2” to the

LogCat as shown below.

Note that there are different levels of log messages:

Verbose: Log.v()

Debug: Log.d()

Information Log.i()

Warning Log.w()

Error Log.e()

Typically you’ll want to use the appropriate method to log the severity of the error message.

Because the log messages can easily get lost in the

numerous messages shown in the LogCat, it’s a good

idea to create a filter so only the messages logged by

our app are displayed.

First click the green + next to Saved Filters (left side of

the LogCat window). This will launch a dialog box as

shown to the right. Enter Hello for the Filter Name and

HelloAndroid_tag as the Log Tag and press OK.

Now when “Hello” is selected from the list of filters, you

should only be able to see the messages logged by the

app as shown below. If you’d like to see all the messages, click “All messages”.

package com.example.helloandroid;

import android.app.Activity;
import android.os.Bundle;
import android.util.Log;

public class HelloAndroid extends Activity {

 private static final String LOG_TAG = "HelloAndroid_tag";

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 int x = 2;
 Log.v(LOG_TAG, "x is " + x);
 }
}

 Frank McCown at Harding University 5

Conclusion

You should now be familiar with setting up an emulator and running an Android app on the emulator. You also

know how to use the Eclipse debugger to step through code and can sending debug information to the LogCat.

In the next tutorial, you will create a more sophisticated Android application that plays tic-tac-toe.

Except as otherwise noted, the content of this document is

licensed under the Creative Commons Attribution 3.0 License

http://creativecommons.org/licenses/by/3.0

